

STUDY OF THE BEHAVIOR OF A COMPOSITE MATERIAL USED IN THE AUTOMOTIVE INDUSTRY

Chaoufi Ali & Benabdelkader Boufeldja

Research Scholar, Laboratory of Mechanics Modeling and Experimentation, TAHRI Mohamed University, Bechar, Algeria

ABSTRACT

The purpose of this study is to analyze a case of failure of composite materials that are used in the automotive industry. This work has allowed us to identify the following points: Theoretical and practical information that concern composite materials, in order to be able to produce mechanical parts. On the other hand; to acquire the static characteristics of rupture of these materials (ABS and Acrylic) through a numerical simulation using the software SOLIDWORKS

We apply to these two materials three static loads, which begin with 1000N and end with 3500N, where we notice that the first material ABS is more resistant than the other one (Acrylic) to the load 3500N and this according to the numerical simulation by software SOLIDWORKS.

KEYWORDS: Composite Materials, Damage, Impact, Numerical Simulation

Article History

Received: 16 Dec 2021 | Revised: 03 Jan 2022 | Accepted: 06 Jan 2022

INTRODUCTION

Composite materials are increasingly replacing traditional metals in most industrial applications. They are used in the manufacture of both technical textiles and composite materials, and are used to develop these new advanced materials.

With a continuously expanding market, the composite materials sector is showing continuous growth. Thanks to this assembly process associating a fiber to a matrix, industrialists have the opportunity to develop materials with a new design, lighter, stronger while ensuring very high performance.

Composite materials are used in many applications and are increasingly flooding our daily lives. In addition to aeronautical and aerospace uses, they are also present in the civil engineering, automotive, shipbuilding, wind power, sports, etc. sectors. In this part we will speak about the use of composite materials in the industry in general and its use in the automotive industry in particular.

A priori, due to their intrinsic characteristics, composite materials, with thermoplastic and/or thermosetting matrices, present three major handicaps compared to metallic materials to allow a production of parts technically and economically compatible with the rates (one car per minute) and the series (1000 to 3000 vehicles/day) encountered in the automotive industry, namely:

- A price per kilogram often higher (especially compared to steel)
- Weaker intrinsic mechanical characteristics: flexural modulus, breaking strength, limit temperatures, etc.
- Processes of implementation of the finished parts often slow: except for the processes of except for injection processes, whose rates, costs and tool life are close to those used in metallurgy (2000 to 3000 parts/day), the other processes commonly used, mainly compression, only allow low or medium rates (from a few parts to 350-400/day, per tool). In this case, the tools, requiring only relatively low investments, have a more limited life span.

Translated with www.DeepL.com/Translator (free version)

COMPOSITES IN THE AUTOMOTIVE INDUSTRY

The automotive market is an important market for the materials industry. In Europe, about 12 million vehicles, with an average mass of 1,000 kg, are produced annually, representing about 12 billion kg of materials. [13]

If in its beginnings, about 100 years ago, an automobile was mainly made of wood and steel, today it gathers many materials belonging to the following large families:

- Ferrous materials: cast iron, steel, sheet metal (about 70% of its mass)
- Non-ferrous materials: aluminum, copper, magnesium (about 5%)
- Mineral materials: glass, ceramics (about 4%)
- Organic materials: paints, adhesives, textiles, fluids, rubbers Thermoplastics and thermo sets reinforced or not by fibers (glass, carbon, armed, natural) or mineral fillers (about 20%). Organic composite materials with thermoplastic or thermosetting matrices reinforced by short or long fibers, generally glass, appeared in the automotive industry in the 1960s and 1970s. Although they are now used almost exclusively to satisfy certain functions, their usage rate does not exceed 10-15% depending on the vehicle. [13]

We Propose to Show

- The interest of using composite materials in the construction of an automobile from the point of view of the manufacturer and its final customer and to highlight the difficulties to be overcome to increase their use.
- The various fields of use in the automobile; for each of them will be examined the evolution of the quantity of composites used compared to the learning curve, the great families product/implementation/assembly method, the advantages/disadvantages, the particular expectations and the constraints.
- The foreseeable evolutions in the future and the problematic linked to the passage from a mono-material vehicle (steel represents more than 70 %) to a multi-material vehicle (steel becomes a minority).

Figure 2 shows the main degradations of composite materials come from the mechanical actions they undergo. Indeed, the network of structured interfaces of the laminates (especially with long fiber) is particularly exposed to degradations because these interfaces are located between components having different mechanical properties. During stresses, the damage tends to follow this network of fibers. Different phenomena can also occur in the folds of this network depending on the direction of the stress parallel to the fibers or not.

Study of the Behavior of a Composite Material Used in the Automotive Industry

Impacts: Following an impact, the length, width and depth of the damage will be specific to the object that has been impacted. Composites being nowadays much more present on a vehicle, they are consequently more subjected to shocks. It is this type of damage that we are most often confronted with in automotive repair. [14]

Figure 1: Example of An Automotive Part Made of Composite Materials.

Figure 2: Impacts on the Bumper.

DESIGN AND SIMULATION OF A VEHICLE ELEMENT (BUMPER) Introduction

Computer or digital simulation refers to the execution of a computer program on a computer or network to simulate a real and complex physical phenomenon. Scientific numerical simulations are based on the implementation of theoretical models often using the finite element technique. They are therefore an adaptation of mathematical modeling to digital means, and are used to study the functioning and properties of a modeled system as well as to predict its evolution. It is also called numerical calculation. The graphic interfaces allow the visualization of the results of the calculations by synthetic images.

Design of a Bumper

The design is made by CAD software passing by different stages to make the final design of the bumper of a Toyota vehicle see figure 3 a and b.

The Materials Chosen for the Study Are ABS and Acrylic

- **ABS:** Acrylonitrile butadiene styrene (ABS) is a thermoplastic polymer that is impact resistant, relatively rigid, lightweight and moldable. It belongs to the family of styrene polymers.
- **The Acrylic Fiber:** it is produced by the polymerization of the acrylonitrile molecule (CH2=CH-CN). It is characterized by a soft and silky touch, infeutrable, of a great lightness, has stability with the folds, and loses little of its properties in aqueous phase.

Figure 3: a and b. Design of a Toyota Shock Absorber Using CAD Software.

SIMULATION

Study Parameter

Study Name	Study3
Type of analysis	Static analysis
Mesh type	Mesh volume
Thermal Effects:	Activated
Thermal option Include	thermal loads
Zero deformation temperature	273 Kelvin
Include fluid pressure calculated by SolidWorks Flow Simulation	Disabled
Solver type	FFE Plus
Stress Stiffening:	Disabled
Low stiffness:	Disabled
Inertial relaxation:	Disabled
Incompatible contact options	Automatic
Big Move	Activated
Check external forces	Activated
friction (e)	Deactivated
Adaptive method:	Disabled
Results folder	Document SolidWorks

Table 1: Study Properties of the Bumper

Properties of Each Material

Model Reference	Properties
	Name: ABS
	Model Type: Linear elastic isotropic
	Default Ruin Criterion: Von Mises stress max.
	Tensile Limit: 3e+ 007 N/m ²
	Modulus of Elasticity: 2e + 009 N/m ²
	Poisson's Ratio: 0.394
Y	Density: 1020 kg / m3
	Shear Modulus: 3.189e + 008 N/m^2

Table 2: Abs Material Properties

Table 3: Properties of Acrylic Material

Model Reference	Properties
14	Name: Acrylic (impacte dium-high)
	Model Type: Linear elastic isentropique
	Criterion Default of Ruin: by von stress Max.
	Yield Strength: 4.5e + 007 N/m ²
	Traction Limit: 7.3e + 007 N/m ²
	Modulus of Elasticity: 3e + 009 N/m ²
	Coefficient of Fish: 0.35
	Density: 1200 kg / m3
1	Module of Shear: 8.9e + 008 N/m ²
	Coefficient of Thermal Expansion: 5.2e-005 / Kelvin

External Actions

Table 4: Boundary Conditions

Name of the Displacement Imposed	Displacement Image Imposed	Details of the Imposed Displacemen			
Geometry of Reference	ALL OF	Entities: 2 faces, 1 map(s) Reference: Front shot Type: Use geometry Reference Imposed Displacement: 0.1, 0.1, 0.1 Units: mm		(s) ference : 0.1, 0.1, 0.1	
	Resulting Forces				
Components	X	Y	Z	Resultant	
Reaction Force (N)	0.24398	2081.1	1966.9	2863.59	
Moment of reaction $(N \bullet m)$	0	0	0	0 N.m	

Table 5: Charge Imposed

Name of Loading	Image of Loading	Loading Details	
Force-1		Entities: 2 face (s) Type: Normal Strength Value: 1000 N	
Force-2	Rep	Entities: 2 face (s) Type: Normal Strength Value: 1500 N	
Force-3		Entities: 2 face (s) Type: Normal Strength Value: 3500 N	

Mesh Information for Both Materials

Volume Mesh Type

Table 6: Mesh Type					
Type of Mesh	Solid Mesh				
Maneler used	Mesh based on curvature				
Jacobian's points	4 Points				
Maximum item size	121.491 mm				
Minimum element size	24.2982 mm				
Meshing quality	Medium quality mesh				

1.1 . C. Mach T

Information on the Mesh of the Structure

Total number of nodes	7657
Total number of items	20380
Maximum aspect ratio	319.35
% of elements with a ratio aspect <3	26.8
% of elements with aspect ratio> 10	18.2
Duration of creation of the mesh (hh: mm: ss):	00:00:07

Table 7: Information on the Mesh

Forces and Moment Resulting Forces

Table 8: Reaction Forces

Set of Units	Selections	Sum X	Sum Y	Sum Z	Resulting	Strength	Material
Whole Model	Ν	0.27334	1388.81	1311.4	1910.15	1000	
Whole Model	Ν	0.43621	2078.98	1966.7	2861.84	1500	ABS
Whole Model	Ν	0.09404	3266.42	3089.9	4496.35	3500	ADS
Whole Model	Ν	0.03026	1387.26	1311.3	1908.93	1000	
Whole Model	Ν	0.24391	2081.15	1966.9	2863.59	1500	Aorulio
Whole Model	Ν	6.09642	4874.35	4605.5	6706.01	3500	Actylic

Reaction Moments

Table 9: Reaction Moments

Set of Units	Selections	Sum X	Sum Y	Sum Z	Resulting	Strength	Material
Bet of emiles	Selections	Dum 11	Dunn 1		ittestations	Strength	material
Whole Model	N.m	0	0	0	0	1000	
Whole Model	N.m	0	0	0	0	1500	ABS
Whole Model	N.m	0	0	0	0	3500	
Whole Model	N.m	0	0	0	0	1000	
Whole Model	N.m	0	0	0	0	1500	Acrylic
Whole Model	N.m	0	0	0		3500	

RESULTS OF STUDY 1ST MATERIAL ABS FORCE APPLIES AND 1000N

Name	Туре	Min	Max
constraints	Constraint of VON Migos	1.86802e-007 N/m^2	2.20426e+007 N/m^2
constraints	Constraint of: VON Mises	Node: 1351	Node: 6
		чут Маке (Ма 20 Ан 20 А	PG) PAR AND AND AND AND AND AND AND AND AND AND

Table 10: Constraint of Von Mises for ABS 1000N

Note: The values of the Von Mises are **Min:** 1.86802e-007 N/m² **Max:** 2.20426^e+007 N/m²

Table 11: ABS Displacement 1000N

Name	Туре	Min	Max
diamla comonta	URES: Displacement	0.121697 mm	19.4762 mm
displacements	Resultant	Node: 5396	Node: 316
		UES (en) 9.409-00 9.259-00 9.259-00 1.241-00 9.259-00 9.259-00 9.259-00 9.259-00 9.259-00 9.259-00 9.2579-00 9.2579-00 9.2579-00	27 77 75 75 75 75 76 76 76 76 76 76 76 76 76 76 76 76 76

Note: The resulting displacement values are Min Displacement: 0.121697 mm Max Displacement: 19.4762 mm

Name	Туре	Min	Max
Defermentions	ESTRN: Deformation	8.62892e-017	0.067896
Deformations	Equivalent	Item: 10424	Item: 7263
		5.57% 4.7% 402 4.2% 4	

Note: The equivalent deformation values are **Min Deformation:** 8.62892e-017 **Max Deformation:** 0.067896

Model of the material ABS on displacement and distortion worthless

Force Applies and 1500N

Name	Туре	Min	Max
Constraints	Constraint of: Von Mises	1.57584e-007 N/m^2	3.37598e+007 N/m^2
		9 19 19 72 19 19 19 19 19 19 19 19 19 19 19 19 19 1	

Table 14: Von Mises Constraint for ABS 1500

Note: The values of the Von Mises put are Constraint Min: 1.57584e-007 N/m^2 Max: 3.37598e+007 N/m^22

Table 15: ABS Displacement 1500N

Name	Туре	Min	Max
Displacement	URES: Displacement	0.118741 mm	30.5851 mm
Displacement	Resultant	Node: 7412	Node: 316
/		UHES (rev) 2.0059- 2.0	400 400 400 400 400 400 400 400 400 400

Note: The resulting displacement values are Min Displacement: 0.118741 mm Max Displacement: 30.5851 mm

Table 10. Add Deformations 1300N				
Name	Туре	Min	Max	
Deformations	ESTRN: Deformation	4.60761e-017	0.107492	
Deformations	Equivalent	Item: 18997	Item: 7263	
-		251789 1 977 9 985 9 896 9 896 9 896 9 899 9 899	5e-401 5e-402 5e-402 5e-402 5e-402 5e-402 5e-402 5e-402 5e-402 5e-402 5e-402	

Table 16: ABS Deformations 1500N

Note: The resulting deformation values are **Min Deformation:** 4.60761e-017 **Max Deformation:** 0.107492

Modeled material is worthless displacement and deformation.

Name	Туре	Min	Max
Constraints	Constraint of Van Missa	1.21748e-007 N/m^2	5.65431e+007 N/m^2
Constraints	Constraint of: von wises	Noeud: 1328	Noeud: 6
		win Miller (Mill 1987) 1987 1987 1987 1987 1987 1987 1987 1987	-***) 90,9 76,6 94,9 94,9 94,9 94,9 94,9 94,9 94,9 9

 Table 18: Von Mises Constraint for ABS (3500)

Note: Von Mises stress values are Stress Min: 1.21748e-007 N/m² Max: 5.65431e+007 N/m²

	Tuble IST HDb Displac		
Name	Туре	Min	Max
Displacements	URES: Displacement	0.08272mm	52.6418 mm
Displacements	Resultant	Node: 5394	Node: 306
/		UUTS (244) 5.564-601 4.328-601 5.938-601 5.938-601 5.938-601 5.938-601 1.938-601	

 Table 19: ABS Displacement 3500N

Note: The resulting displacement values are Min Displacement: 0.082724 mm Max Displacement: 52.6418 mm

Table 20: ABS Deformations 3500N

Name	Туре	Min	Max
Deformations	ESTRN: Deformation	1.31433e-016	0.194014
Deformations	Equivalent	Item: 7111	Item: 7263
/		EITH 1.38x.00 1.75x.00 1.475x.00 1.475x.00 1.455x.00 1.455x.00 1.455x.00 1.455x.00 0.8944.00 0.8944.00 0.8944.00 0.3244.00 1.3444.00	

Note: The resulting deformation values are: Min Deformation 1.31433e-016 Max Deformation 0.194014

Table 21: ABS Deformations 3500N	Table 2	1: ABS	Deforma	tions	3500N
----------------------------------	---------	--------	---------	-------	-------

Name	Туре
Deformations	Distorted model

Modeled material on displacement and deformation without values The second material to choose Acrylic.

The Applied Force and 1000N

		inses suces for Acry	
Name	Туре	Min	Max
Constraints	Constraint	0.0208499 N/m^2	2.49714e+007 N/m^2
Constraints	of: Von Mises	Node: 3983	Node: 6
			 ∞ (n/u-27) 447: 1700 447: 1700 447: 1700 457: 1700 457: 1700 457: 1700 457: 1700 458: 17

Table 22: Von Mises stress for Acrylic 1000N

Note: The values of The constraint of Von Mises are Constraint **Min Constraint**: 0.0208499 N/m² **Max Constraint**: 2.49714e+007 N/m²

TADIE 23. AUTVIL DISDIALEMENT IVVV	Tal	ble	23:	Acryli	c Disp	lacement	1000N
------------------------------------	-----	-----	-----	--------	--------	----------	-------

Name	Тире	Min	Max
Displacement	UDES. Displacement resultant	0.130893 mm	12.1333 mm
Displacement	UKES: Displacement resultant	Node: 7455	Node: 310
		UBS (ens) 1.256-007 1.256-007 1.256-007 1.256-007 1.256-007 1.256-007 1.256-007 1.256-007 1.256-007 1.256-007 1.256-007 1.256-007 1.256-007 1.256-007	

Note: The resulting displacement values are displacement Min Displacement: 0.130893 mm Max Displacement: 12.1333 mm

Table 24: Acrylic Deformations 1000N

Name	Туре	Min	Max
Deformations	ESTRN: Deformation	1.24734e-011	0.0495554
Deformations	equivalent	Item: 15447	Item: 7263
/		1006 1006 1006 1006 1007 1006 1006 1006	905 900 900 905 905 905 905 905 905 905

Note: The resulting deformation values are: **Min Deformation:** 1.24734e-011 **Max Deformation:** 0.0495554

Table 25: Acrylic Deformations 1000N

Model material on displacement and deformation without value

The Applied Force and 1500 N

Name	Туре	Min	Max
Constraints	Constraints of:	0.0208499 N/m^2	2.49714e+007 N/m^2
	Von Mises	Node: 3983	Node: 6
			en Milleen (Nev 7) 20 66 40 00,0 20 68 0,0 20 68 0,0 20 68 0,0 20 70 10 10,0 20 70 10,0 20 7

Table 26: Von Mises Constraints for Acrylic 1500N

Note: Von Mises stress values are constrained Min: 0.0208499 N/m² Max: 2.49714e+007 N/m²

Table 27: Acrylic Moves 1500N

Name	Туре	Min	Max
Dianlagamenta	URES: Displacement	0.126935 mm	20.5493 mm
Displacements	resultant	Node: 5396	Node: 310
		Utee (m 12) 13) 14) 14) 14) 14) 14) 14) 14) 14) 14) 14	e) 656+001 759+001 746+001 746+001 746+001 746+000 758+000 758+000

Note: The resulting displacement values are Min Displacement: 0.126935 mm Max Displacement: 20.5493 mm

Type ESTRN: Deformation equivalent	Міп 7.59668е-017 Item: 9965	Max 0.0827896 Item: 7263
ESTRN: Deformation equivalent	7.59668e-017 Item: 9965	0.0827896 Item: 726
equivalent	Item: 9965	Item: 726.
	BUTRA	
	ESTR04	
	0.279+ 003	
	7.586e-002	
	n 190a-002	
	. 0.205e-002	
	6.57 (0-00)	
	4.138+-002	
	0.6574-007	
	2 /656-002	
	2.5706-002	
	1.360+-002	
	U. and Chill	
		6 (5%,40) 1 (27%,40) 4 (27%,40) 4 (27%,40) 4 (27%,40) 2 (27%,40) 2 (27%,40) 2 (27%,40) 2 (27%,40) 3 (27%,

Table 28: Acrylic Deformations 1500N

Note: The resulting deformation values are Min Deformation: 7.59668e-017 Max Deformation: 0.0827896

Modeled material on displacement and deformation without value

Tge Applied Force and 3500N

Table 50. Constraints of von Mises for Act yie 550010				
Name	Туре	Min	Max	
constraints	Constraints of: Von Mises	2.03451e-007 N/m^2 Node: 5182	1.03317e+008 N/m^2 Node: 920	
		enternanteria en	asticity nit	

Table 30: Constraints of Von Mises for Acrylic 3500N

Note: Von's stress values are Constraint Min: 2.03451e-007 N/m² Max Stress: 1.03317e+008 N/m² Elasticity Limit: 4.5e-007 N/m²

Tuble ett Herjite Displacement ee off				
Name	Туре	Min	Max	
Dignlagomento	URES: Displacement	0.125125 mm	56.6678 mm	
Displacements	resultant	Node: 5394	Node: 306	
		UPES (mm)		
		5.007e+000		
/		A J 2Ner UNI		
/-		3726e+30		
1		. 3.518+-08		
		2.107++108		
		1 425e+708		
		- 4.359/6+100		
		1 068-401		

Table 31:	Acrvlic	Displacemen	t 3500N
I unic offi	The yne	Displacemen	

Note: The resulting displacement values are **Min Displacement:** 0.125125 mm

Max Displacement: 56.6678 mm

Note: The resulting deformation values are **Min Deformation:** 9.90956e-017 **Max Deformation:** 0.244909

Name	Туре
Deformations	Distorted model

Modeled material on worthless displacement and deformation

RESULTS AND DISCUSSIONS

Let's make a summary after applying the different loads on the two materials by curves represented on the following Figures:

Figure 4 show the Von-Mises stress of the Acrylic material is low compared to that of the ABS material.

Figure 5 show the deformation of Acrylic material is high compared to ABS material.

Figure 6 show the displacement of the Acrylic material is higher than that of the ABS material.

According to the comparison of the results obtained in Von-Mises values, deformation and displacement, the material of construction of the impact is the ABS material which gave good results compared to the Acrylic material for the same boundary conditions.

Taking into account that the value of the applied load is 3500 N, beyond that a higher load cannot be applied.

Figure 4: Evaluation of the Von-Mises Constraint Based on the Load.

Figure 5: Evaluation of Deformation Based on Load.

Figure 6: Assessing the Movement Based on the Load.

GENERAL CONCLUSIONS

This study allowed us to choose between two composite materials used for the construction of car bumpers. To achieve this objective, both materials ABS and Acrylic were solicited to a static rupture (impact test) starting with a load of 1000N, passing by the value of 1500N and ending with 3500N.

After CAD design, numerical simulation by SOLIDWORKS software and analysis of Von- Mises results, we can say that ABS (acrylonitrile butadiene styrene) material is the best used for this kind of automotive parts.

Hoping that this work helps car manufacturers to make the right choice of the bumper construction material which is an important element to the safety of people in the road

REFERENCES

- 1. DJEBLOUN Youcef. Study of the opening mode failure of composite materials. Master's thesis. University Mohamed Khider Biskra, 2004, 69.
- 2. BERTHELOT Jean-Marie. Composite materials (5th ed.) Mechanical behavior and analysis of structures. ISMANS Institut Supérieur des Matériaux et Mécaniques Avancés. Le Mans, France.2012.
- 3. Fabrice DAL MASO. Composite pipelines Study of drilling. Techniques de l'Ingénieur, Plastics and Composites, AM 5551.
- 4. Jean LUYCKX. Carbon fiber composites in civil engineering. Techniques de l'Ingénieur, Plastics and Composites, AM 5620.
- 5. Maurice REYNE. Composites in sports and leisure. Techniques de l'Ingénieur, Plastics and Composites, AM 5630.
- 6. Jacques CINQUIN. Composites in aerospace. Techniques de l'Ingénieur, Plastics and Composites, AM 5645.
- 7. Jean-Michel GUILLEMOT, Yves-Henri GRUNEVALD. Composites in Railway construction. Techniques de l'Ingénieur, Plastics and Composites, AM 5650.
- 8. Patrick PARNEIX; Dominique LUCAS Composite materials in military shipbuilding. Techniques de l'Ingénieur, Plastics and Composites, AM 5660.

- 9. Patrice HAMELIN Reinforcement of engineering structures by composite materials. Techniques de l'Ingénieur, Plastics and Composites, AM 5615.
- 10. Patricia KRAWCZAK. High pressure tanks in composites. Techniques de l'Ingénieur, Plastics and Composites, AM 5530.
- 11. Yves PREL Composite structures for the Arianne launcher. Techniques de l'Ingénieur, Plastics and Composites, AM 5646.
- 12. Alain GIOCOSA. Composites in the automotive industry. Techniques de l'Ingénieur, Plastics and Composites, AM 5600.
- 13. Composite materials, File created with the collaboration of Marc Marzano Action Composite Pascal Celle -GNFA. ANFA / Edition 2014